
3d Multi Way Feedback Encryption Standard
Version II (3dMWFES -II)

Arijit Ghosh1, Prabhakar Chakraborty2, Asoke Nath3

1,2,3Department of Computer Science,
St. Xavier’s College, Kolkata-700016,

West Bengal, India

Abstract— In the present paper the authors have introduced a
new symmetric key cryptographic method which is based on
three way simultaneous feedback method applied along three
dimensions on plain text. Nath et al already developed
3dMWFES ver-1 where they have used encryption methods in
both x-axis and y-axis wise in different frames. In the present
method the authors have made encryption along z-axis also. In
the method the plain text is divided into a number of square
matrices where the size of the matrix and number of frames
are balanced. For example if plain text has 20 characters then
the size of the matrix will (3x3) and no of framess will be 2 and
2 additional residual characters. The initial feedback is
predetermined. The feedback is applied first x-axis wise and
after that y-axis wise and finally z-axis wise. The forward and
the backward feedback is applied to all 3 directions one after
the other. The ASCII value of plain text, the key value, the
forward feedback value and the backward feedback value
calculated along three directions are used to generate the
cipher text. The intermediate cipher text is taken modulo 256
to get the final cipher text. The decryption process is obtained
by observing the pattern of cipher text and by evaluating the
values of feedback arrays. 3dMWFES ver-2 is completely a
new method and this can be used for encryption of any kind
small or large message, password, and confidential
information’s in sensor networks. The results of this method
show that the present method is free from common attacks
such as known plain text attack, differential attack or any kind
of brute force attack

Keywords— forward feedback, backward feedback, cipher,
key

I. INTRODUCTION
The present encryption method can be applied multiple
times to make the system fully secure. Thorough tests were
made on some standard plain text files and it was found that
it is quite impossible for any intruder to extract the plain
text from encrypted text using brute force method. In the
present paper the authors have introduced a new symmetric
key cryptographic method which is based on two way
simultaneous feedback method applied along three
dimensions (axis) on plain text. The process starts by
dividing the plain text into a number of square matrices
where the size of the matrix and number of layers are
balanced. For example, if plain text has 20 characters then
the size of the matrix will be (3x3) and no of layers will be
2 and 2 additional characters will be left out . The initial
feedback is set to 0. The forward and the backward
feedback is applied to each layer (i.e. each square matrix)

along three dimensions (i.e. row wise and column wise and
layer wise). The ASCII value of plain text, the key value,
the forward feedback value and the backward feedback
value calculated along dimensions are used to generate the
cipher text. The intermediate cipher text is taken modulo
256 to get the final cipher text. After completion of
applying feedback mechanism row wise column wise
feedback is then applied and later layer wise feedback is
applied. The decryption process is obtained by observing
the pattern of cipher text and by evaluating the values of
feedback arrays. The present feedback method is totally a
new method and this can be used for encryption of message,
password, and confidential information in sensor networks.
The results of this method show that the present method is
free from common attacks such as known plain text attack,
differential attack or any kind of brute force attack. As for
same plain text the method generates totally different cipher
text even for small change in the key.

II. LITERATURE REVIEW

A. MWFES-I
Nath et al developed MWFES I which encrypts the
plaintext using forward feedback and backward feedback
one after another. The initial feedback is random. User
gives the feedback values. The encryption process starts
from the left hand side of the plain text. In MWFES I,
intermediate cipher text value is generated by adding the
ASCII value of the plaintext, key and forward feedback. If
this intermediate cipher text value exceeds 256, authors
applied modulo 256 operation on it. Then this value is
stored in the next column of the second column of the
forward feedback array. In the second round, encryption
process starts from right hand side of the plaintext.
Intermediate cipher text is generated by adding the ASCII
value of the plaintext character, backward feedback and key.
Here also, if the resulting cipher text value exceeds 256,
modulo operation is performed. Then the value is stored on
the previous column of the backward feedback array. This
process continues n times, until all feedback values get
modified. Encryption process acts as a two way feedback
control. The control is passed between forward process and
backward process alternately. This algorithm performs both,
confusion and diffusion. It hides the relationship between
cipher text & key and plaintext and cipher text.

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2990

B. MWFES-II
Nath et al developed MWFES II which also encrypts
plaintext using two feedback strings and keys. Encryption
process starts from left hand side and proceed towards right
hand side. Then encryption process starts from left hand
side and proceed towards right hand side. Encryption from
LHS to RHS is done by adding the ASCII value of the
plaintext, forward feedback, backward feedback and key. If
the resulting intermediate value exceed 256, modulo 256
operation performed on it. Then this modified intermediate
cipher text is placed on the nth position from current
position. Then algorithm encrypt from RHS to LHS. ASCII
value of plaintext, backward feedback, forward feedback
and key are added together to generate intermediate cipher
text. If this result exceeds 256, then modulo 256 operation
takes place. After this, the intermediated cipher text is
placed on the nth position towards left. This “nth place”
moving from both LHS and RHS, contrasts with the version
I. Control is passed between LHS and RHS alternately. This
algorithm also expands its initial key. Forward feedback
and backward feedback are initially set to 0. During
execution, initial value changes to different values. Thus it
hides the original feedback values. These two feedback
strings acts as two additional key.

C. MWFES-III
In Multi way Feedback Encryption Standard III, the authors
divided the plaintext into blocks. It uses keypad which is
generated using the key expansion algorithm. In each
iteration block size also changes. In each iteration, the block
size, forward feedback, backward feedback, and the skip
factor n for each block is taken as a function of the keypad.
So, after every iteration, these four variables changes. The
total number of the encryption iteration is also takes as the
function of the user given seed and referred as encryption
number. After completion of a single round, residual
characters (if any) are moved to the beginning of the
encrypted text and the same encryption process is applied.
Authors showed that results completely hide the frequency.
This is a novel method because the skip factor is being
changed in a random number for every iteration. Thus multi
way feedback encryption standard 3 becomes very hard to
decrypt. Retrieval of plaintext from the encrypted message
becomes impossible by any known attack method. The
encryption process is non-linear and thus it is impossible to
apply any brute force attack, differential attack on this
present method.

III. METHOD USED TO GENERATE FEEDBACK

Before applying encryption method the plain text and the
key are divided into square matrices. The number of layer is
dependent on the length of the plain text. The length of the
plain text and the length of the key must be equal. The
feedback arrays are created which are of same size as of the
plain text and the key. The feedback arrays are initialized
by zero (0). Suppose for example we take a plain text:
111111111111111111 and also take a random no (say
11111) as our key. The string array will store the ASCII
value of the corresponding plain text that the use gives as
input. The key generation procedure will expand the key

according to the length of the plain text. The length of the
key and the plain text will be of same size. Then after
dividing the plain text and the key according to our method
it looks like,

TABLE I
STRARR (STRING ARRAY LAYER 0):

49 49 49

49 49 49

49 49 49

TABLE II

STRARR (STRING ARRAY LAYER 1):

49 49 49

49 49 49

49 49 49

After the expansion of the key the key array will look like,

TABLE III
 KEYARR (KEY ARRAY LAYER 0):

137 107 167

47 32 62

2 122 137

TABLE IV

 KEYARR (KEY ARRAY LAYER 1):

107 167 47

32 62 2

122 137 107

The forward and the backward feedback arrays are
initialized by zero. According to the method the feedback
arrays will be modified. The forward and the backward
feedback are applied row wise in each square matrix
simultaneously. The forward feedback starts from the first
cell of the first square matrix of the lowest layer and the
values stored in the same cell of the key array and feedback
arrays are added and the resultant value is stored in the next
cell of the forward feedback array. Similarly the backward
feedback starts from the last cell of the first row of each
square matrix the values stored in the same cell of key array
and feedback arrays are added and stored in the previous
cell of the backward feedback array. The string array and
the key array will remain same. After the first iteration the
modified feedback arrays will be,

TABLE V
 IFXFARR (LAYER 0):

0 186 46

6 0 0

0 0 0

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2991

TABLE VI
 IFXFARR (LAYER 1):

0 0 0

0 0 0

0 0 0

TABLE VII
IBXFARR (LAYER 0):

46 216 0

0 0 232

0 0 0

TABLE VIII
IBXFARR (LAYER 1):

0 0 0

0 0 0

0 0 0

The forward feedback of the last cell of the row will passed
to the next row. Similarly the backward feedback of the
first cell of the row will passed to the next row. After
completion of feedback in first row the matrices will be
look like,

TABLE IX

 IFXFARR (LAYER 0):

160 186 46

6 102 14

101 152 113
TABLE X

 IFXFARR (LAYER 1):

159 59 124

229 54 143

121 36 63

TABLE XI
IBXFARR (LAYER 0):

46 216 99

14 87 232

113 46 116
TABLE XII

 IBXFARR (LAYER 1):

124 105 9

143 234 183

63 97 197
The main key point of this encryption method is that the
feedback value of the last cell of the matrix of last layer is
stored in the first cell from where feedback started.
Therefore all the characters of the plain text is encrypted.
That gives the encryption a different complexity.

The plain text array or string array (strarr) will be modified
as:

strarr[k][i][j]=(strarr[k][i][j]+keyarr[k][i][j] +ifxfarr[k][i][j]
+ ibxfarr[k][i][j]). The matrix will look like this after
modification:

TABLE XIII
STRARR (LAYER 0):

136 46 105

116 14 101

9 113 159

TABLE XIV

 STRARR (LAYER 1):

183 124 229

197 143 121

99 63 160

After the completion of row wise encryption the column
wise encryption is performed on the modified string array.
For this we take the transpose of the string array and apply
the row wise encryption on it. The feedback arrays
corresponding to the column wise encryption is initialized
by zero. Before the column wise encryption is applied the
string array will look like,

TABLE XV.
STRARR (STRING ARRAY LAYER 0):

136 116 9

46 14 113

105 101 159

TABLE XVI
STRARR (STRING ARRAY LAYER 1):

183 197 99

124 143 63

229 121 160

The forward and the backward feedback of arrays
corresponding to column wise encryption will be generated
according to the method used above. After generation of the
feedback arrays the final feedback arrays will be,

TABLE XVII

IFYFARR (FORWARD Y-AXIS FEEDBACK ARRAY LAYER 0):

107 17 160

80 173 59

155 6 245

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2992

TABLE XVIII
IFYFARR (FORWARD Y-AXIS FEEDBACK ARRAY LAYER 1):

5 39 32

173 73 158

38 133 121

TABLE XIX

IBYFARR (BACKWARD Y-AXIS FEEDBACK ARRAY LAYER 0):

TABLE XX

IBYFARR (BACKWARD Y-AXIS FEEDBACK ARRAY LAYER 1):

The plain text array or string array (strarr) will be modified
as:

strarr[k][i][j]=(strarr[k][i][j]+keyarr[k][i][j]+ifyfarr[k][i][j]
+ ibyfarr[k][i][j]).
After getting the modified cipher text we have to re-
transpose the string array to get the original order of the
plain text. The modified string array will look like,

TABLE XXI
STRARR (LAYER 0):

 28 232 251

160 59 245

78 155 5

TABLE XXII
STRARR (LAYER 1):

71 231 254

32 158 121

173 38 107

Before applying layer wise encryption method we have to
transpose the string array layer wise and then we encrypt
the string array row wise. The matrix that will be encrypted
layer wise will look like,

TABLE XXIII
STRARR (LAYER 0):

28 71 232

231 251 254

160 32 59

TABLE XXIV
STRARR (LAYER 1):

158 245 121

78 173 155

38 5 107

This matrix is constructed by picking up values layer wise
and storing them row wise. Therefore the arrays are in such
order that we can apply row wise encryption on it. The key
array will remain same. The forward and backward array of
layer wise feedback is initialized by 0. And we apply the
row wise feedback mechanism to generate the feedback
matrices after the feedback matrices are generated they will
look like,

TABLE XXV

IFZFARR (FORWARD Z-AXIS FEEDBACK ARRAY LAYER 0):

58 165 230

117 139 109

52 214 44

TABLE XXVI

IFZFARR (FORWARD Z-AXIS FEEDBACK ARRAY LAYER 1):

232 241 55

225 79 255

196 100 22

TABLE XXVII

IBZFARR (BACKWARD Z-AXIS FEEDBACK ARRAY LAYER 0):

TABLE XVIII

IBZFARR (BACKWARD Z-AXIS FEEDBACK ARRAY LAYER 1):

The final cipher array will be computed by the
following formula
strarr[k][i][j]=(strarr[k][i][j]+keyarr[k][i][j]
+ifzfarr[k][i][j] + ibzfarr[k][i][j]).
After the string array is modified we have to re-
transpose it to get the original cipher text in proper order.

160 176 254

59 96 177

245 16 232

32 141 251

158 136 71

121 242 231

230 143 122

109 199 139

44 188 248

55 170 2

255 197 40

22 36 78

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2993

The final cipher text will be,
TABLE XXIX

STRARR (LAYER 0):

28 71 232

231 251 254

160 32 59

TABLE XXX

STRARR (LAYER 1):

158 245 121

78 173 155

38 5 107

If there is any character left in the plain text then we will
put those in the front of the string array and fill up the rest
of the arrays by taking the values from the previously
modified array and store them sequentially. This modified
string will again encrypted along three dimensions. Now
the whole plain text is stored in a array. The complexity of
the encryption method increased as it can be seen that the
first and the last part of the modified array is encrypted
once whereas the middle part is encrypted twice.

IV. ALGORITHM FOR 3DMWFES
A. CONDITIONS TO FIND THE OPTIMAL ARRAY

DIMENSIONS
1) The number of columns and rows in the 2-D array must
be the same.
2) The number of layers i.e. the number of 2-D arrays to be
created must never exceed the dimension of the array itself
except for when the length of the string is 2 or 3.

Example: For string length is 2 or 3 the array dimensions
are {1,1,2} and {1,1,3}.
Else the dimension must always be of the form {a, a, b}
where b<=a.

3)If length of the string is 1 or 8 it is changed to 2 or 9 by
adding an extra ‘space’ at the end of the string.

B. ALGORITHM FOR ENCRYPTION
Step 1: Take the plain text as input from user and load it
into strarr array.

Step 2: Take the key as input from user. The key expansion
algorithm will expand the key according to the string length
and load it into the keyarr array.

Step 3: Continue steps 4 to 6 until all the values in the cells
of the ifxfarr and ibxfarr are modified. Alternately update
ifxfarr and ibxfarr, after calculation of each cell of each
matrix.

Step 4: Calculate the sum of the values in cell of strarr,
keyarr, ifxfarr and ibxfarr and store the value in the next

cell (column wise) of the forward feedback array
(ifxfarr).The process starts from the first cell of the array.

Step 5: After each cell calculation of ifxfarr calculate the
value of ibxfarr in the following way. Calculate the sum of
strarr, keyarr, ifxfarr and ibxfarr and store it to the previous
cell of ibxfarr starting from the last column of the first row.

Step 6: After each row calculation, the calculation of next
row begins. The last backward and forward feedback values
of each row are passed to the last and first column of next
row. The same is true for all the next layers.

Step 7: The last forward and backward value is passed to
starting cell of ifxfarr and ibxfarr i.e. the first cell of ifxfarr
and the last cell of first row of ibxfarr.

Step 8: Calculate and modify all the values of string array
in the following way: strarr[k][i][j]= strarr[k][i][j]+
keyarr[k][i][j]+ifxfarr[k][i][j]+ ibxfarr[k][i][j].

Step 9: Transpose the string array and store it into strarr.

Step 10: Repeat steps 3 to 7 and store the corresponding
feedback values in ifyfarr (forward y-axis feedback array)
and ibyfarr (backward y-axis feedback array).

Step 11: Calculate values of all cells of modified strarr as:
strarr[k][i][j]=strarr[k][i][j]+ keyarr[k][i][j]+
ifyfarr[k][i][j]+ ibyfarr[k][i][j];

Step 12: Re-transpose the modified strarr to get the original
order of the string array.

Step 13: Transpose the modified strarr layer wise. This
matrix is constructed by picking up values layer wise and
storing them row wise. Therefore the arrays are in such
order that we can apply row wise encryption on it.

Step 14: Repeat steps 3 to 7 and store the corresponding
feedback values in ifzfarr (forward z-axis feedback array)
and ibzfarr (backward z-axis feedback array).

Step 15: Calculate values of all cells of modified strarr as:
strarr[k][i][j]=strarr[k][i][j]+ keyarr[k][i][j]+
ifzfarr[k][i][j]+ ibzfarr[k][i][j].

Step 16: Re-transpose the modified strarr layer wise to get
the original order.

Step 17: If there are any residual characters in the input
string while allocating it to the strarr then add the residual
characters to the beginning cells of the strarr and fill the rest
of the matrix with cipher array characters. If there are no
residual characters re-encrypt the modified strarr again.

Step 18: Encrypt the characters using the steps 3 to 15.

Step 19: After encryption rearrange the characters in correct
order to get the final cipher.

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2994

Step 20: Repeat the steps from 1 to 19 for (string_length %
5 + 1) number of times to get the final encrypted string.

P.S:- If the input is of length 1 and 8 then an extra space is
added to the plain text.

C. ALGORITHM FOR DECRYPTION

Step 1: Compute the dimensions of the array based on the
length of the cipher text.

Step 2: Find the characters that might have been left over if
the cipher text was copied to the array.

Step 3: Copy the residual characters into the array first and
then fill rest of the array with characters starting from the
first character of the cipher text. Do the same to the key
array as well.

Step 4: The first task is the z-axis decryption. The whole
array is transposed layer wise into another array of same
dimensions i.e. in case of 2 layers the 1st character in layer 1
becomes the first character of transposed array, the 1st
character of layer 2 becomes the 2nd character of transposed
array, the 2nd character of layer 1 is the 3rd character of
transposed array and so on.

Step 5: The decryption is done by following a pattern
among the cipher array and the forward and backward axis
arrays. The forward and backward axis arrays must be of
the same dimensions as that of the cipher array. First
calculate the position of the middle column of the arrays.

Step 6: If the current cell of the cipher array being traversed
is greater than or equal to the middle column position but
less than or equal to the last column position copy the
values of the current cell to the next cell of the forward axis
array.

Step 7: If current cell position is less than or equal to the
middle column position but greater than first column
position then subtract current cell value from the previous
cell value and store it in the current cell position of the
forward axis array.

Step 8: If the current cell of the cipher array being traversed
is less than or equal to the middle column position but
greater than or equal to the first column position copy the
values of the current cell to the next cell of the backward
axis array.

Step 9: If current cell position is greater than or equal to the
middle column position but less than or equal to the last
column position then subtract current cell value from the
next cell value and store it in the current cell position of the
backward axis array.

Step 10: Except for the positions (0, 0, 1), (0, 0, c1-2), (0, 1,
0), (0, 1, c1-1) of the cipher array, where c1 is the total no.
of columns, the key, forward feedback and backward

feedback values are subtracted from the cipher to get the
required value.

Step 11: After the values have been found the left out
values in the feedback arrays are found by adding the
forward, backward, key and cipher values of the previous
positions as was calculated during encryption and stored in
the array strarr[][][]. The array is then re-transposed to get
the original order.

Step 12: Now y-axis decryption is to be done. The
strarr[][][] array is transposed first.

Step 13: Then steps 5 to 11 are to be repeated to get the
decrypted text and is again stored in the strarr[][][] array.
The array is then re-transposed layer wise to get the original
order.

Step 14: Now the x-axis decryption is to be done.

Step 15: The steps 5 to 11 are to be repeated to get the
decrypted text and is again stored in the strarr[][][] array.

Step 16: After the decryption has been done the decrypted
string is reordered in its correct form and concatenated with
the previously left out cipher text characters.

Step 17: Copy the maximum number of characters possible
into the array from the newly created string starting from
the beginning of the string.

Step 18: Repeat the steps from 4 to 16 to get the decrypted
string.

Step 19: Repeat the steps from 1 to 18 for (string_length %
5 + 1) number of times to get the final decrypted string.

V. RESULTS AND DISCUSSIONS
The plain text is taken as following shown in the table. The
key we have taken is constant in all the cases i.e. 1234. The
encrypted value is shown over here. The corresponding
number of matrix operations and the execution time is also
shown in the table.

TABLE XXXI

Plain
Text

Encrypted
Text

Number of Matrix
Operations

Time
taken

12345678 Òñe†g¹S2 540 24ms

12349678 VeÉù>+Ág¦ 540 10ms

abcdefghij Ñ9Úë%å›Ž 108 7ms

1 «ž 72 4ms

The encryption was also applied on other files like
executable file, image, docx files etc. The result was found
to be quite satisfactory. A screenshot of an image file has
been provided as an example:

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2995

Fig. 1 Original file

Fig. 2 Encrypted file

Fig. 3 Part of the encryption as text

Fig. 4 Decrypted file

The execution time and lines of code responsible for
encryption was calculated and the graph was derived for
each accordingly. The graphs are shown as below:

Fig. 5 File size vs. Execution Time graph

Fig. 6 File size vs. Number of Operations graph

VI. MERITS OF 3DMWFES METHOD
1) Invulnerable to traditional attacks like brute force or

statistical attack will not be able to break the present
method.

2) A single change in the plain text or key leads to a vast
change in the cipher text which is almost chaotic in
nature.

3) Due to the addition of an initial matrix creation process,
the attacker needs to find out what the dimension of the
matrix is. Without that any attack is bound to fail.

4) Even if the string and the key consists of same
characters, the cipher text generated has no relation
between its characters nor is there any problem of
frequency.

5) It has been seen that even for a stream of characters with
ASCII value ‘1’ the cipher text generated is much
complex.

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2996

VII. CONCLUSION AND FUTURE SCOPE
1) The present method is tested on various types of files

such
as .doc, .jpg, .bmp, .exe, .com, .dbf, .xls, .wav, .avi and
the results were quite satisfactory. The encryption and
decryption methods work smoothly. The algorithm has
the complexity of O(n3). However, for encryption of
large files it takes large time.

2) This algorithm can be further developed to create more
complex cipher text. One way can be to have a random
selection of axes which can be decided by a sub
function. The order of transition from one axis to
another cannot be then easily tracked hence adding
more chaos to the cipher text.

3) This algorithm has ample scopes for development. The
algorithm can be modified to reduce its time
complexity to a great extent without compromising
with its quality.

4) The feedback arrays can be initialized with a random
number instead of initializing it with some constant
value. So, interpreting the plaintext values become
more difficult.

5) Also the key generation algorithm can be modified so
that for each iteration of the encryption or decryption
function a new key is generated.

REFERENCES
[1] Purnendu Mukherjee, Prabal Banerjee, Asoke Nath, Multi Way

Feedback Encryption Standard Ver-I(MWFES-I) , International
Journal of Advanced Computer Research(IJACR), Volume-3,
Number-3, Issue-11, September 2013, Pages:176-182.

[2] Asoke Nath, Debdeep Basu, Surajit Bhowmik, Ankita Bose and
Saptarshi Chatterjee, Multi Way Feedback Encryption Standard Ver-
2(MWFES-2),. Paper submitted in International Conference : IEEE
WICT 2013 to be held in December 15-18, 2013 at Hanoi, Vietnam.

[3] Asoke Nath, Payel Pal, Modern Encryption Standard Ver-IV(MES-
IV), International Journal of Advanced Computer Research(IJACR),
Volume-3, Number-3, Issue-11, September 2013, Page:216-223.

[4] Asoke Nath, Bidhusundar Samanta, Modern Encryption Standard
Ver-V(MES-V), International Journal of Advanced Computer
Research(IJACR), Volume-3, Number-3, Issue-11, September 2013,
Pages:257-264.

[5] Prabal Banerjee, Asoke Nath, Bit LevelGeneralized Modified
Vernam Cipher Method with Feedback: Proceedings of International
Conference on Emerging Trends and Technologies held at Indore,
Dec 15-16,2012.

[6] Prabal Banerjee, Asoke Nath, Advanced Symmetric Key
Cryptosystem using bit and byte level encryption methods with
feedback: Proceedings of International conference Worldcomp 2013
held at LasVegas, July 2013.

[7] Arijit Ghosh, Prabhakar Chakraborty, Asoke Nath, Shamindra Parui,
“3d Multi Way Feedback Encryption Standard Version
1(3DMWFES-1)”. International Journal of Advance Research in
Computer Science and Management Studies, ISSN:2321-
7782(online), Vol 2, Issue 10, Oct, Page:206-218(2014)

Arijit Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2990-2997

www.ijcsit.com 2997

